If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+21x+1.75=0
a = -4.9; b = 21; c = +1.75;
Δ = b2-4ac
Δ = 212-4·(-4.9)·1.75
Δ = 475.3
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-\sqrt{475.3}}{2*-4.9}=\frac{-21-\sqrt{475.3}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+\sqrt{475.3}}{2*-4.9}=\frac{-21+\sqrt{475.3}}{-9.8} $
| -14u+4=-15u | | (27x-11)=(20x+10) | | (x-36)-x=180 | | (4x-2)+(9x+1)=90 | | 2.10w=11.70 | | -4m-20+5m=-m+18 | | -4.9x^2+20x+1.75=0 | | -6-10w=-7w | | 10-g=g-2 | | 2+9v+2=9+4v | | 3m2-4m-7=0 | | 5-0.4x=3.8 | | Y-10=10-9y | | (2x)/9+1/3=4/15 | | -4x+3.2=0 | | -3=-3+x/1 | | 8+9b-10=-b+8 | | 2t-8=t | | -6y-8=-4y | | -10+x/7=-12 | | 9-9t=3-10t | | 7x-21=4x+31 | | 7d=-10+2d | | 6r+21=-3-2r | | 7u=-9+4u | | 4+8x=148 | | 18x/136+18x*100=21 | | 10-2r=-4r | | 4.8x+59.9=26.7-11.8x | | 4m(m+1)=0 | | 3(48-16x)=16(4+2x) | | 50=90-2y |